- COLAPIETRO, M., DOMENICANO, A., MARCIANTE, C. & PORTALONE, G. (1983). Eur. Crystallogr. Meet. 8, 124.
- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- FRENZ, B. A. & OKAYA, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- FRITCHIE, C. J. & TRUS, B. L. (1968). Chem. Commun. pp. 833-834.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

two molecules (A and B). For molecule A: the N-

glycosidic torsion angle χ has a value of -168.8 (6)°

in the *anti* range; the sugar pucker is ${}_{3}^{2}T$ with $P = 179 (1)^{\circ}$ and $\psi_{m} = 31 (1)^{\circ}$ and the C4'—C5' con-

formation is +sc with $\gamma = 53.9$ (9)°. For molecule B: the N-glycosidic torsion angle χ has a value of

-131.8 (7)° in the anti range; the sugar pucker is ²E

with $P = 161 (1)^{\circ}$ and $\psi_m = 35 (1)^{\circ}$ and the C4'-C5'

conformation is +sc with $\gamma = 51.2 (9)^{\circ}$. (III) 1-(3-

bromouracil, C₉H₁₀BrN₅O₄, $M_r = 332.11$, monoclinic, P2₁, a = 5.858 (3), b = 11.813 (6), c = 17.757 (9) Å, $\beta = 92.70$ (4)°, V = 1227 (1) Å³, Z = 4,

 $0.71073 \text{ Å}, \mu = 3.332 \text{ mm}^{-1}, F(000) = 664, T = 290 \text{ K}, \text{ final } R = 0.027 \text{ for } 1713 \text{ unique observed}$

reflections. The asymmetric unit contains two mol-

ecules (A and B). For molecule A: the N-glycosidic

torsion angle χ has a value of -168.4 (4)° in the *anti* range; the sugar pucker is ${}_{3}T^{4}$ with P = 203 (1)° and

 $\psi_m = 37 (1)^\circ$ and the C4'—C5' conformation is +scwith $\gamma = 172 \cdot 1 (5)^\circ$. For molecule *B*: the *N*-glycosidic torsion angle χ has a value of $-129 \cdot 8 (5)^\circ$ in the *anti*

range; the sugar pucker is ${}^{2}T_{3}$ with $P = 173 (1)^{\circ}$ and

 $\psi_m = 33 (1)^\circ$ and the C4'—C5' conformation is ap (antiperiplanar) with $\gamma = 50.5 (7)^\circ$. All the conforma-

tional parameters are in accordance with the

IUPAC-IUB Joint Commission on Biochemical

Nomenclature [Pure Appl. Chem. (1983), 55, 1273-

 $D_x = 1.797 \text{ Mg m}^{-3}, \qquad \lambda(\text{Mo } K\alpha) =$

Azido-2,3-dideoxy-β-D-erythro-pentofuranosyl)-5-

Acta Cryst. (1991). C47, 898–902

Structure of Nucleoside Analogues 3'-Fluoro-2',3'-dideoxyuridine, 3'-Fluoro-2',3'-dideoxy-5-bromouridine and 3'-Azido-2',3'-dideoxy-5-bromouridine*

BY D. H. EVERAERT, O. M. PEETERS, N. M. BLATON AND C. J. DE RANTER[†]

Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Instituut voor Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

AND A. VAN AERSCHOT AND P. HERDEWIJN

Laboratorium voor Farmaceutische Chemie, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

(Received 21 June 1990; accepted 17 September 1990)

 $D_m = 1.80,$

Abstract. (I) 1-(3-Fluoro-2,3-dideoxy- β -D-erythropentofuranosyl)uracil, $C_9H_{11}FN_2O_4$, $M_r = 230.20$, monoclinic, $P2_1$, a = 9.046 (5), b = 6.994 (4), c = 15.826 (8) Å, $\beta = 101.19$ (4)°, V = 982.3 (9) Å³, Z =4, $D_m = 1.56$, $D_x = 1.557$ Mg m⁻³, λ (Mo K α radiation) = 0.71073 Å, $\mu = 0.127$ mm⁻¹, F(000) = 480, T = 290 K, final R = 0.029 for 1495 unique observed reflections. The asymmetric unit contains two molecules (A and B). For molecule A: the Nglycosidic torsion angle χ has a value of $-121 \cdot 1$ (2)° in the anti range; the sugar pucker is ${}^{2}E$ with P =165 (1)° and $\psi_m = 35$ (1)° and the C4′—C5′ conformation is +sc (synclinal) with $\gamma = 51.3$ (3)°. For molecule B: the N-glycosidic torsion angle χ has a value of $-150.5 (2)^{\circ}$ in the *anti* range; the sugar pucker is ${}_{3}^{2}T$ with $P = 176 (1)^{\circ}$ and $\psi_{m} = 26 (1)^{\circ}$ and the C4'—C5' conformation is +sc with $\gamma =$ 47.4 (3)°. (II) 1-(3-Fluoro-2,3-dideoxy- β -D-erythropentofuranosyl)-5-bromouracil, $C_9H_{10}BrFN_2O_4$, $M_r = 309.09$, monoclinic, $P2_1$, a = 5.701 (4), b =18.192 (9), c = 10.538 (5) Å, $\beta = 95.67$ (5)°, V = 1088 (1) Å³, Z = 4, $D_m = 1.89$, $D_x = 1.888$ Mg m⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 3.759$ mm⁻¹, F(000) = 616, T = 290 K, final R = 0.034 for 1597 unique observed reflections. The asymmetric unit contains

© 1991 International Union of Crystallography

898

^{*} Structural Studies of Modified Nucleosides. Part IX. Part VIII: De Winter, Blaton, Peeters, De Ranter, Van Aerschot & Herdewijn (1991).

[†] To whom correspondence should be addressed.

1280] guidelines. Base-pair formation occurs in each Ta of the three crystal structures.

Experimental. Details of data collection and refinement are listed in Table 1. Crystals were obtained at room temperature, (I) from amyl acetate-ethanol, (II) from ethanol-water and (III) from water. Density measured by flotation (I) in *n*-heptane/CCl₄ and (II and III) in CHCl₃/CHBr₃. Space group $P2_1$ from systematic absences 0k0 for k odd. X-ray diffraction data collected on a STADI-4 computer-controlled four-circle diffractometer, graphite-monochromated Mo $K\alpha$ radiation. The standard reflections monitored after every 120 min showed no significant decrease in intensity per h. Lorentz-polarization corrections, absorption corrections by the method of North, Phillips & Mathews (1968) based on (II) three reflections $(\overline{3}01, \overline{4}01, \overline{6}22)$ and (III) four reflections $(0,\overline{10},\overline{9}, 1\overline{76}, 0\overline{43}, 022)$, no absorption corrections for (I). Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B) and Stewart, Davidson & Simpson (1965) (for H atoms).

Initial attempts to solve the structure of (I) with MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) failed. Modification of the default input parameters did not resolve the problem. The structure was solved using the 3'-fluoro-2',3'-dideoxyuridine skeleton from 3'fluoro-3'-deoxythymidine (Everaert, Peeters, Blaton, De Ranter, van Aerschot & Herdewijn, 1990) as input model for the vector-search rotation-functions programs ORIENT (Beurskens, Beurskens, Strumpel & Nordman, 1987). The result of ORIENT was a well oriented skeleton which had to be positioned with respect to the space group symmetry elements by strengthened translation functions using the automated program TRADIR (Doesburg & Beurskens, 1983). The outcome of TRADIR was a well shifted and oriented skeleton which was used as input to DIRDIF (Beurskens, Bosman, Doesburg, van den Hark, Prick, Noordik, Beurskens, Gould & Parthasarathi, 1983) for further elucidation of the structure. DIRDIF revealed the positions of all non-H atoms of the second molecule in the asymmetric unit. A difference synthesis revealed the position of two H atoms (attached to atoms O5'A and O5'B). All other H atoms were included at calculated positions (C-H and N-H distances 0.95 Å). For (II) and (III) the two Br positions were obtained from a sharpened Patterson synthesis. The positions of these atoms served as input for a Fourier synthesis which revealed the positions of 18 non-H atoms forming the two base moieties. A subsequent Fourier synthesis revealed all remaining non-H atoms. For (II) a difference synthesis revealed the positions of two H atoms (attached to atoms O5'A and O5'B). All other

able	1.	Details	of	data	collection	and	structure
			1	refiner	nent		

	(1)	(II)	(111)
Crystal dimensions (mm)	$0.10 \times 0.40 \times 0.20$	$0.60 \times 0.30 \times 0.25$	$0.35 \times 0.35 \times 0.30$
colour, shape	colourless,	yellowish,	colourless,
	prismatic	prismatic	prismatic
Lattice parameters			-
Number of reflections	24	24	24
2θ range (°)	$21 < 2\theta < 30$	$22 < 2\theta < 26$	$21 < 2\theta < 25$
Scan technique	$\omega/2\theta$	$\omega/2\theta$	$\omega/2\theta$
Maximum $2\theta(\cdot)$	50	50	50
hkl range	$-11 \le h \le 11$	$-7 \le h \le 0$	$-7 \le h \le 7$
•	$-8 \le k \le 0$	$-22 \le k \le 22$	$-14 \leq k \leq 14$
	$-19 \le l \le 19$	$-13 \leq l \leq 13$	$-21 \leq l \leq 0$
Standard reflections	331, 532, 118, 406	081, 055, 014, 062	140, 036, 018, 071
No. of measured reflections	3778	4254	4446
No. of unique reflections	1891	1982	2261
No. of unique observed	1497	1597	1713
reflections ($F \ge 4\sigma F$)			
R_{int} (contributing reflections)	0.017	0.032	0.042
R, wR	0.029, 0.036	0.034, 0.042	0.027, 0.031
Goodness-of-fit S	1.008	1.325	1.111
Weighting scheme	$w = 1/[\sigma(F_u)]^2$	$w = 1/[\sigma(F_o)]^2$	$w = 1/[\sigma(F_o)]^2$
Max. shift/e.s.d.	0.03	0.03	0.03
Min. and max. residual	-0.215, 0.131	-0.537, 0.233	-0.434, 0.537
electron density (e A ')			
No. of refined parameters	289	306	402
No. of reflections per refined parameter	5-2	5.2	4.3

H atoms were included at calculated positions (C—H and N—H distances 0.95 Å); for (III) a difference synthesis revealed the positions of all H atoms.

For the three structures all non-H atoms were refined anisotropically on F by full-matrix least squares. Two reflections of (I) (002, 101), badly affected by extinction, were eliminated from the refinement. For (I) and (II) all H atoms were given fixed isotropic temperature factors 1.3 times that of the parent atom and allowed to ride on their parent atoms and for (III) all H atoms were refined with fixed isotropic temperature factors 1.3 times that of the parent atom. For compound (III) the peaks of minimum and maximum electron density (-0.434)and $0.537 \text{ e} \text{ Å}^{-3}$) lie ca 1Å from the Br atom positions. Owing to absorption the C5A-Br5A distance is 1.840 (6) Å instead of a normal 1.883 Å distance for a Br—C_{sp²} bond (Allen, Kennard, Watson, Brammer, Orpen & Taylor, 1987). All calculations were performed on a Digital PDP 11/73 and MicroVAX 2000 microcomputer using SDP (B. A. Frenz & Associates Inc. and Enraf-Nonius, 1985) and PARST (Nardelli, 1983).

A *PLUTO* (Motherwell & Clegg, 1978) plot of molecule A of each title compound with the atomic numbering scheme is shown in Fig. 1(a, b and c). The final fractional atomic coordinates are given in Table 2,* bond lengths, bond angles and some selected torsion angles are given in Table 3.

^{*} Lists of structure factors, anisotropic thermal parameters, bond lengths and angles involving H atoms, least-squares planes and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53592 (58 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2.	Atomic coordinates	(×10⁴)	and eq	uiva	lent
isotropic	thermal parameters	with	e.s.d.'s	of	the
	refined parameters in	i pareni	theses		

Table 2 (cont.)

	rafinad	naramatars i	n naranthasa	s of the		x	У	Ζ	$B_{\rm eq}({\rm \AA}^2)$
	rejineu	purumeters i	n purentneses	,	(III)				
		$B_{\infty} = (4/3) \sum_{i} \sum_{i} l_{i}$	3 aa		N1 <i>A</i>	1328 (8)	6390*	1139 (2)	2.2 (1)
		- uq (- ij = (· -)·		C2A	10 (10)	6080 (5)	1713 (3)	2.3 (1)
(*)	x	У	Ζ	$B_{eq}(A^2)$	O2 <i>A</i>	- 1648 (7)	5454 (4)	1608 (2)	3.06 (9)
(1)					N3A	685 (8)	6494 (4)	2402 (3)	2.5 (1)
NIA	4434 (2)	-40*	3367 (1)	2.42 (4)	C4A 014	2470 (10)	7208 (5)	2583 (3)	2.6 (1)
C2A	5624 (3)	- 603 (4)	3009 (2)	2.62(5)	C54	2921 (7)	7518 (5)	3230 (2)	3.7(1)
N34	6214(2)	-2137(3)	3151 (1)	3.81 (4)	Br5A	6219 (1)	8462-8 (8)	2062-6 (4)	2.4(1) 3.64(1)
C4A	5500 (3)	2479 (4)	2474(1)	2.70 (4)	C6A	3138 (9)	7104 (6)	1248 (3)	2.6 (1)
04 <i>A</i>	5967 (2)	3444(3)	1740(1)	3.61 (4)	Cl'A	800 (10)	5795 (5)	395 (3)	2.0(1) 2.4(1)
C5A	4334 (3)	3015 (4)	2724 (2)	2.80(5)	C2'A	- 1420 (10)	6228 (7)	12 (4)	3.7(2)
C6A	3831 (3)	1754 (4)	3228 (1)	2.69(5)	C3'A	-830 (10)	6311 (6)	-814(3)	3.3(1)
Cl'A	3795 (3)	- 1380 (4)	3903 (1)	2.59 (5)	N3'A	- 1160 (10)	5170 (5)	-1147 (3)	4.2 (1)
C2'A	3819 (3)	- 700 (5)	4809 (2)	3.11 (5)	N4' <i>A</i>	-831 (9)	5111 (5)	- 1819 (3)	3.4 (1)
C3'A	2498 (3)	- 1711 (5)	5029 (2)	3.29 (6)	N5'A	- 560 (10)	4945 (6)	-2435 (3)	4.5 (1)
F3'A	2945 (2)	- 3565 (3)	5288 (1)	4.99 (4)		1690 (10)	6648 (5)	- 741 (3)	2.6 (1)
C4'A	1385 (3)	- 1810 (4)	4198 (2)	2.94 (5)	04 A C5' A	2303 (0)	0035 (4) 7005 (7)	-82(2)	2.50 (8)
04 A C5' A	2204 (2)	~ 1639 (3)	3533(1)	$3 \cdot 17(4)$	05' 4	4348 (9)	8168 (4)	-637(3)	3·0 (1) 5.1 (1)
05'A	847 (2)	- 508 (5)	4061 (2)	3.73 (0)	00 M	4546 (5)	0100 (4)	408 (5)	5.1(1)
	017 (2)	1013 (4)	4257 (1)	4 44 (3)	NIB	4538 (8)	4757 (4)	3917 (2)	2.4 (1)
NIB	-104 (2)	2119 (3)	8587 (1)	2.35 (4)	O_{B}	5970 (10) 7602 (7)	5122 (5)	3374 (3)	$2 \cdot 3(1)$
O_{2B}	1025 (3)	2/32 (4)	8192 (2)	2.59 (5)	N3R	5369 (8)	2080 (4) 4796 (4)	3323 (2) 2656 (2)	3.18 (9)
N3 <i>R</i>	1398 (2)	4302 (3)	8332(1)	4.00 (4)	C4B	3542 (9)	4115 (5)	2030 (2)	2.4(1) 2.3(1)
C4B	784 (3)	-234(4)	7365 (2)	2.76 (4)	O4B	3243 (7)	3885 (4)	1745(2)	3.3(1)
04 <i>B</i>	1173 (2)	-1122(3)	6779 (1)	3.73(4)	C5 <i>B</i>	2203 (9)	3766 (5)	3031 (3)	$2 \cdot 3(1)$
C5B	-339(3)	- 786 (4)	7827 (2)	3.24(5)	Br5 <i>B</i>	- 311 (l)	2777.2 (7)	2798.1 (3)	3.17(1)
C6 <i>B</i>	- 743 (3)	373 (4)	8402 (2)	3.13 (5)	C6 <i>B</i>	2710 (10)	4081 (5)	3730 (3)	2·3 (Ì)
Cl'B	- 603 (3)	3419 (4)	9205 (1)	2.57 (5)	C1' <i>B</i>	4960 (10)	5116 (6)	4702 (3)	2.6 (1)
C2'B	- 1879 (3)	4694 (5)	8794 (2)	3.66 (6)	C2'B	3180 (10)	5895 (6)	4982 (3)	3.3 (1)
C3'B	- 2854 (3)	4840 (4)	9448 (2)	3.01 (5)	C3 B N3'P	3130 (10)	5606 (6)	5804 (3)	$3 \cdot 1 (1)$
F3B CA'P	-2420(2) -2552(2)	6414 (3) 2027 (4)	9979 (1)	4.78 (4)	NA'R	4960 (10)	62/1 (6)	6203 (3) 6004 (3)	$4 \cdot 3(1)$
O4'B	-2332(3) -1126(2)	2240 (2)	9903 (2)	2.81 (5)	N5'B	4930 (10)	6438 (6)	7522 (3)	3.1(1)
C5'B	-3746(3)	1562 (6)	9712 (2)	2.64 (3)	C4'B	3670 (10)	4339 (6)	5822 (3)	2.9(1)
O5'B	-4053(2)	1405 (4)	8809 (1)	5.29 (5)	O4'B	4933 (7)	4126 (4)	5160(2)	2.70(8)
				5 25 (5)	C5'B	1590 (10)	3574 (7)	5829 (3)	3.6 (1)
(11)					O5'B	- 38 (8)	3869 (5)	5251 (3)	4.5 (1)
NIA	2040 (10)	3080*	7681 (6)	2.5 (1)		* Paramete	r kept fixed for	origin definitio	n
C2A	3780 (10)	2596 (4)	8126 (7)	2.7 (2)				ongin demitie	
N2 A	3520 (10)	2809 (3)	8/12(5)	3.7 (1)					
C4A	1660 (10)	1617 (4)	7738 (0) 6921 (7)	2.8(1) 2.5(1)	Table	3 Rond	lonaths (Å)	hand anal	(\circ) and
O4A	1660 (10)	985 (3)	6589 (6)	$\frac{2.5(1)}{3.6(1)}$	rable	J. Dona I	$(\Lambda),$	Dona ungie	
C5A	-100(10)	2170 (4)	6522 (7)	2.7(2)	selecte	a torsion a	ngies (*) with	e.s.a. s in p	arentheses
Br5A	- 2664 (1)	1853.7 (6)	5408.5 (8)	3.36 (2)			4	D	
C6A	160 (10)	2859 (4)	6894 (7)	2.5 (1)	(II)		А	D	
Cl'A	2370 (10)	3859 (4)	8086 (7)	2.9 (2)			1.260 (2)	1.265 (2)	
C2'A	4340 (10)	4229 (4)	7450 (8)	3.4 (2)	N1 - C6		1.366 (3)	1.358 (4)	
C3'A E3'A	3420 (20)	5001 (5)	7327 (8)	3.9 (2)	NI-CI'		1.459 (4)	1.330(4) 1.470(3)	
CA'A	4070 (10)	3373 (3) 4915 (4)	8432 (3) 7161 (8)	3.7(1)	C2O2		1.212 (3)	1.217(3)	
O4'A	335 (9)	4230 (3)	7769 (6)	3.1(2)	C2-N3		1.358 (3)	1.359 (3)	
C5'A	-300(20)	4924 (5)	5809 (8)	4.1(2)	N3—C4		1.372 (4)	1.370 (4)	
O5'A	820 (10)	4390 (4)	5105 (6)	$4 \cdot 8(2)$	C4O4		1.219 (3)	1.223 (3)	
			(-)		C4-C5		1.433 (4)	1.417 (4)	
N1 <i>B</i>	6740 (10)	- 1197 (3)	7575 (6)	2.6 (1)	CI'CV		1.527 (4)	1.502 (4)	
C2B	5030 (10)	- 738 (4)	7056 (7)	2.8 (2)	C1' - 04'		1.406 (3)	1.301 (3)	
02 <i>B</i>	3290 (10)	- 958 (3)	6413 (6)	4.2 (1)	C2'—C3'		1.486(4)	1.487 (4)	
CAR	7180 (10)	- 19 (4)	/322 (6)	3.0 (1)	C3′—F3′		1.396 (4)	1.394 (3)	
O4B	7210 (10)	941 (3)	8360 (6)	2.6(2) 3.5(1)	C3′—C4′		1.496 (3)	1.499 (5)	
C5B	8950 (10)	-231(4)	8566 (7)	2.5(1)	C4'04'		1.441 (3)	1.436 (3)	
Br5 <i>B</i>	11572 (1)	92.3 (6)	9604.1 (7)	3.16(1)	C4'C5'		1.495 (5)	1.490 (4)	
C6 <i>B</i>	8690 (10)	-930 (4)	8305 (7)	2·5 (Ì)	CS-05'		1.406 (5)	1.406 (3)	
Cl'B	6440 (10)	- 1979 (4)	7408 (7)	2.8 (2)	C2-N1-	C6	121.4 (2)	120.6 (2)	
C2'B	8220 (10)	- 2321 (4)	6604 (7)	2.9 (2)	C2—N1—	Cl′	119-1 (2)	117.6 (3)	
C3'B	8490 (10)	- 3072 (5)	7143 (7)	3.2 (2)	C6-N1-	C1′	119.6 (3)	121.7 (2)	
г э <i>В</i> С4' Р	0/30 (10) 8180 (10)	- 3337 (3) - 2086 (4)	65/5 (5) 8516 (7)	5·2 (1)	NI-C2	02	122.5 (2)	122.1 (2)	
O4'B	6945 (9)	- 2313 (3)	8607 (5)	$\frac{2 \cdot 7}{3 \cdot 0} \frac{(2)}{(2)}$	NI-C2-	1NJ NI3	115-2 (2)	115.6 (2)	
C5'B	10460 (10)	- 2937 (5)	9358 (8)	3.7 (2)	C2-N3-	C4	122.5(2) 127.0(2)	122.3 (2)	
O5'B	11870 (10)	- 2396 (4)	8859 (6)	4.2 (1)	N3-C4	04	119.7 (2)	119.9 (2)	

Table 3 (cont.)

Table 3 (cont.)

A

В

	Α	В
$N_{3}-C_{4}-C_{5}$ $D_{4}-C_{4}-C_{5}$ $C_{4}-C_{5}-C_{6}$ $N_{1}-C_{1}-C_{2}'$ $N_{1}-C_{1}'-C_{2}'$ $N_{1}-C_{1}'-C_{4}'$ $C_{2}'-C_{1}'-O_{4}'$ $C_{2}'-C_{3}'-F_{3}'$ $C_{2}'-C_{3}'-C_{4}'$ $C_{3}'-C_{4}'-C_{4}'$ $C_{3}'-C_{4}'-C_{5}'$ $D_{4}'-C_{4}'-C_{5}'$ $C_{1}'-O_{4}'-C_{4}'$ $C_{4}'-C_{5}'-C_{5}'$ $C_{2}-N_{1}-C_{1}'-O_{4}'$ $C_{2}'-C_{1}'-O_{4}'-C_{4}'$ $C_{2}'-C_{1}'-O_{4}'-C_{4}'$ $C_{2}'-C_{1}'-O_{4}'-C_{4}'$ $C_{2}'-C_{1}'-O_{4}'-C_{4}'$ $C_{2}'-C_{1}'-O_{4}'-C_{4}'$ $C_{3}'-C_{1}'-C_{2}'-C_{3}'$ $C_{4}'-C_{5}'-C_{5}'$ $C_{2}-N_{1}-C_{1}'-C_{4}'-C_{4}'$ $C_{2}'-C_{1}'-O_{4}'-C_{4}'$ $C_{3}'-C_{1}'-C_{2}'-C_{3}'-C_{4}'$ $C_{4}'-C_{5}'-C_{5}'-C_{5}'$ $C_{2}-N_{1}-C_{1}'-C_{4}'-C_$	114.3 (2) $126.0 (3)$ $119.7 (3)$ $122.2 (2)$ $114.6 (2)$ $108.1 (2)$ $105.5 (2)$ $102.1 (2)$ $108.4 (2)$ $108.4 (2)$ $105.4 (2)$ $105.4 (2)$ $115.1 (2)$ $109.9 (2)$ $110.2 (2)$ $110.1 (2)$ $-121.1 (2)$ $-19.5 (3)$ $32.9 (3)$	$\begin{array}{c} 113.7 (2) \\ 126.4 (3) \\ 120.7 (3) \\ 122.5 (2) \\ 109.0 (2) \\ 109.0 (2) \\ 109.0 (2) \\ 109.6 (2) \\ 109.6 (2) \\ 109.6 (2) \\ 109.6 (2) \\ 109.6 (2) \\ 109.6 (2) \\ 109.6 (3) \\ 113.0 (3) \\ 110.5 (2) \\ 111.3 (2) \\ 108.4 (3) \\ -150.5 (2) \\ -10.3 (3) \\ 22.9 (3) \\ 21.0 $
C1'C2'C3'C4' C2'C3'C4'O4' C3'C4'O4'C1' C3'C4'C5'O5'	$\begin{array}{c} -33.8 (3) \\ 23.0 (3) \\ -2.1 (3) \\ 51.3 (3) \end{array}$	$\begin{array}{r} -26.2 (3) \\ 20.6 (3) \\ -6.5 (3) \\ 47.4 (3) \end{array}$
$\begin{array}{c} \text{II} \text{J} \\ \text{N1}-\text{C2} \\ \text{N1}-\text{C6} \\ \text{N1}-\text{C1}' \\ \text{C2}-\text{O2} \\ \text{C2}-\text{N3} \\ \text{N3}-\text{C4} \\ \text{C4}-\text{C5} \\ \text{C5}-\text{C6} \\ \text{C5}-\text{Br5} \\ \text{C1}'-\text{C2}' \\ \text{C1}'-\text{O4}' \\ \text{C2}'-\text{C3}' \\ \text{C3}'-\text{F3}' \\ \text{C3}'-\text{C4}' \\ \text{C4}'-\text{C5}' \\ \text{C5}'-\text{O5}' \\ \end{array}$	$\begin{array}{c} 1.371 (9) \\ 1.349 (9) \\ 1.490 (8) \\ 1.210 (9) \\ 1.33 (1) \\ 1.33 (1) \\ 1.32 (1) \\ 1.202 (9) \\ 1.45 (1) \\ 1.32 (1) \\ 1.52 (1) \\ 1.52 (1) \\ 1.55 (1) \\ 1.50 (1) \\ 1.50 (1) \\ 1.44 (1) \\ 1.50 (1) \\ 1.41 (1) \end{array}$	$\begin{array}{c} 1\cdot356 \ (9)\\ 1\cdot38 \ (1)\\ 1\cdot44 \ (1)\\ 1\cdot212 \ (9)\\ 1\cdot35 \ (1)\\ 1\cdot367 \ (9)\\ 1\cdot367 \ (9)\\ 1\cdot212 \ (9)\\ 1\cdot44 \ (1)\\ 1\cdot31 \ (1)\\ 1\cdot858 \ (7)\\ 1\cdot52 \ (1)\\ 1\cdot41 \ (1)\\ 1\cdot48 \ (1)\\ 1\cdot41 \ (1)\ (1)\ (1)11 \ (1)111 \ (1)11 \ (1)11 \ (1)111 \ (1)11 \ (1)11 \ (1)11 \ (1)11 \ (1)11 $
$\begin{array}{c} 22 - N1 - C6 \\ 22 - N1 - C1' \\ 26 - N1 - C1' \\ N1 - C2 - O2 \\ N1 - C2 - N3 \\ 02 - C2 - N3 \\ 03 - C4 - C5 \\ 04 - C4 - C5 \\ 04 - C4 - C5 \\ 04 - C5 - C6 \\ 04 - C5 - C6 \\ 04 - C5 - C6 \\ 01 - C5 - C6 \\ 01 - C6 - C5 \\ 01 - C1' - O4' \\ 02' - C3' - C3' \\ 02' - C3' - C4' \\ 03' - C4' - C5' \\ 04' - C4' \\ 04' - C4' - C5' \\ 04' - C4' - C4' \\ 04' - C4' \\ 04' \\ 04' - C4' - C5' \\ 04' - C4' - C5' \\ 04' - C4' - C4' \\ 04' - C4' \\ 04' \\ 04' - C4' - C5' \\ 04' - C4' - C5' \\ 04' - C4' \\ 04' \\ 04' \\ 04' \\ 04' \\ 04' \\ 04' \\ 04' \\ 04' \\ 04' \\ 04' \\ 04' \\ 0$	121-6 (5) $116-6 (6)$ $121-8 (5)$ $120-7 (7)$ $115-2 (6)$ $124-0 (8)$ $128-5 (6)$ $121-8 (7)$ $111-6 (6)$ $126-5 (7)$ $121-2 (7)$ $116-3 (5)$ $122-5 (6)$ $121-5 (6)$ $111-8 (6)$ $109-0 (6)$ $108-9 (6)$ $100-4 (6)$ $108-9 (7)$ $105-5 (7)$ $115-4 (7)$ $110-8 (6)$ $100-9 (6)$ $108-9 (7)$ $110-8 (6)$ $108-9 (7)$ $105-8 (7)$ $105-8 (7)$ $105-8 (7)$ $105-8 (7)$ $105-8 (7)$ $105-8 (7)$ $105-8 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$ $108-9 (7)$ $105-8 (6)$	121.2 (6) 119.1 (6) 119.7 (6) 122.5 (8) 115.2 (6) 122.3 (7) 128.0 (6) 122.3 (7) 128.0 (7) 124.9 (7) 120.6 (7) 119.2 (6) 120.1 (6) 102.2 (7) 113.3 (6) 107.8 (6) 103.7 (7) 102.4 (7) 110.7 (6) 105.0 (6) 105.4 (6) 113.7 (7) 108.3 (7) 111.7 (6) 108.3 (7) 111.7 (6) 108.3 (6) 108.3 (6) 108.3 (6) 108.3 (6) 108.3 (6) 108.3 (6) 108.3 (7) 111.7 (6) 108.3 (7) 111.7 (6) 108.3 (6) 108.3 (6) 108.3 (6) 108.3 (7) 111.7 (7) 108.3 (7) 111.7 (6) 108.3 (7) 111.7 (7) 111.8 (7)
C2'-C1'-O4'-C4' D4'-C1'-C2'-C3' C1'-C2'-C3'-C4'	$ \begin{array}{r} -11.2 (8) \\ 26.7 (8) \\ -31.2 (8) \end{array} $	$ \begin{array}{r} -21.2 (8) \\ 32.8 (7) \\ -32.7 (8) \end{array} $

C2'-C3'-C4'-O4' C3'-C4'-O4'-C1' C3'-C4'-C5'-O5'	26·4 (8) - 9·6 (8) 53·9 (9)	20·8 (8) 0·7 (8) 51·2 (9)
(III)	()	(,)
N1C2	1.355 (8)	1.376 (7)
	1.304 (7)	1.366 (7)
(2-0)	1.313(7) 1.230(7)	1.407 (7)
C2—N3	1.358 (7)	1.364(7)
N3-C4	1.371 (8)	1.386 (7)
C4—O4	1.219 (7)	1.236 (6)
C4C5	1.452 (9)	1.428 (8)
C5-C6	1.336 (8)	1.316 (7)
C_{1} C_{1	1.529 (9)	1.402 (0)
C1′—04′	1.394(7)	1.425(7)
C2'-C3'	1.526 (9)	1.501 (8)
C3'—N3'	1.481 (9)	1.483 (9)
C3′—C4′	1.530 (9)	1.53 (1)
N3'N4'	1.219 (7)	1.249 (7)
N4'N5'	1.130 (8)	1.107 (7)
C4 - C4	1.449 (7)	1.440 (7)
C5'-O5'	1.439 (8)	1.409 (7)
C2-N1-C6	121.6 (4)	120.7 (4)
C2-N1-C1'	115.7 (4)	119.7 (5)
C6—N1—C1′	122.4 (5)	119.6 (4)
NI - C2 - O2	121.3 (5)	$122 \cdot 7(5)$
n_{-C2-N3}	173.1 (6)	121.9 (5)
$C_2 - C_2 - C_3$	$123^{11}(0)$ 128.2(5)	121.9 (0)
N3-C4-04	1202(5) 121.8(5)	127 + (5) 119.4 (5)
N3-C4-C5	112.3 (5)	112.6 (4)
O4C4C5	125.8 (5)	128.0 (5)
C4C5Br5	118.7 (5)	117.3 (4)
C4 - C5 - C6	120.6 (5)	121.9 (5)
BI3 - C3 - C0 N1 - C6 - C5	120.7(4) 121.7(5)	120.9 (4)
NI - CI' - C2'	1217(5) 111.5(5)	122 + (5) 114.0 (5)
NI-CI'-04'	$108 \cdot 1$ (4)	107.4 (5)
C2'-C1'-O4'	107.5 (5)	106.9 (5)
C1′—C2′—C3′	102.8 (5)	103-2 (5)
C2'—C3'—N3'	107.1 (6)	107.4 (5)
C2' - C3' - C4'	101.4 (5)	103.3 (6)
$N3^{\circ}-C3^{\circ}-C4^{\circ}$	112.2 (5)	111-3 (6)
$N_{3'} = N_{3'} = N_{3'}$	173.4 (7)	115.4 (5)
C3'-C4'-O4'	103.9 (5)	105.5 (5)
C3'-C4'-C5'	111.6 (5)	114.6 (5)
O4′—C4′—C5′	111-2 (5)	110.2 (5)
C1′—O4′—C4′	110.5 (4)	110.0 (5)
C4′—C5′—O5′	109.8 (5)	111-3 (5)
C2-N1-C1'-O4'	-168.4(4)	- 129.8 (5)
$C_2 - C_1^2 - C_4^2 - C_4^2$	2.8 (6)	- 14.2 (6)
$C_1' - C_2' - C_2' - C_3'$	20.4(7) = 33.0(7)	29·7 (6) _ 22.0 (6)
$C_1 - C_2 - C_3 - C_4$ $C_2' - C_3' - C_4' - C_4'$	36.1 (6)	- 32.9 (0)
C3'C4'O4'C1'	- 24.9 (6)	- 7.0 (6)
C3'-C4'-C5'-O5'	172.1 (5)	50.5 (7)
		()

Each structure contains two molecules in the asymmetric unit. This is a remarkable fact. To justify that no higher symmetry has been overlooked and that the two molecules in the asymmetric unit are crystallographically independent the following arguments can be used. Weissenberg photographs have been taken to give a view of the entire reciprocallattice level. From this, the cell parameters and space group have been deduced and no higher symmetry has been noticed. Density measurements confirm the calculated density. In each structure, the conformation of the two independent molecules is significantly different (see *i.e.* $\dot{\gamma}$, χ and the sugar puckering), and, at last, the chemical synthesis excludes racemic mixtures. The presence of the two independent molecules, which are linked by a hydrogen bonding

Fig. 1. Atomic numbering scheme of molecule A of (a) compound (I), (b) compound II and (c) compound III.

network, is probably due to the small differences in energy for changing the pseudorotation phase angle P. Indeed, the variation of the total energy when the pseudorotation phase angle P changes between 130 and 200°, *i.e.* the range of possible C2'-endo conformations, is within 8.37×10^3 J mol⁻¹ (Saenger, 1984).

Related literature. The method of preparation for (I) has been described by Herdewijn, Van Aerschot & Kerremans (1989) and for (II) by Van Aerschot, Herdewijn, Balzarini, Pauwels & De Clercq (1989). Compound (III) has been synthesized according to Lin, Chen, McLaren, Gao, Ghazzouli & Prusoff (1987).

The authors wish to thank J. P. Van Cuyck for his help in preparing the figures.

References

- ALLEN, F. H., KENNARD, O., WATSON, D. G., BRAMMER, L., ORPEN, G. & TAYLOR, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- B. A. FRENZ & ASSOCIATES INC. AND ENRAF-NONIUS (1985). SDP Structure Determination Package. College Station, Texas, USA, and Delft, The Netherlands.
- BEURSKENS, P. T., BEURSKENS, G., STRUMPEL, M. & NORDMAN, C. E. (1987). Patterson and Pattersons, edited by J. P. GLUSKER, B. K. PATTERSON & M. ROSSI, pp. 356–367. Oxford Univ. Press.
- BEURSKENS, P. T., BOSMAN, W. P., DOESBURG, H. M., VAN DEN HARK, T. E. M., PRICK, P. A. J., NOORDIK, J. H., BEURSKENS, G., GOULD, R. O. & PARTHASARATHI, V. (1983). DIRDIF. Applications of Direct Methods to Difference Structure Factors. Univ. of Nijmegen, The Netherlands.
- DE WINTER, H. L., BLATON, N. M., PEETERS, O. M., DE RANTER, C. J., VAN AERSCHOT, A. & HERDEWIJN, P. (1991). Acta Cryst. C47, 838-842
- DOESBURG, H. M. & BEURSKENS, P. T. Acta Cryst. A39, 368-376.
- EVERAERT, D. H., PEETERS, O. M., BLATON, N. M., DE RANTER, C. J., VAN AERSCHOT, A. & HERDEWIJN P. (1990). Acta Cryst. C46, 1730-1732.
- HERDEWIJN, P., VAN AERSCHOT, A. & KERREMANS, L. (1989). Nucleosides Nucleotides, 8(1), 65–96.
- IUPAC-IUB JOINT COMMISSION ON BIOCHEMICAL NOMENCLATURE (1983). Pure Appl. Chem. 55, 1273–1280.
- LIN, T.-S., CHEN, M. S., MCLAREN, C., GAO, Y.-S., GHAZZOULI, I. & PRUSOFF, W. H. (1987). J. Med. Chem. 30, 440-444.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- North, A. C. T., Phillips, D. C. & Mathews, S. T. (1968). Acta Cryst. A24, 351-359.
- SAENGER, W. (1984). In *Principals of Nucleic Acid Structure*. Ch. 4. New York: Springer-Verlag.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- VAN AERSCHOT, A., HERDEWIJN, P., BALZARINI, J., PAUWELS, R. & DE CLERCQ, E. (1989). J. Med. Chem. 32, 1743–1749.